
NASA-CR-203268

7

Array Distribution in Data-Parallel
Programs

Siddhartha Chatterjee
John R. Gilbert

Robert Schreiber
Thomas J. Sheffler

RIACS Technical Report 94.09 July 1994

To appear in the Proceedings of the Seventh Annual Workshop on Languages and Compilers for

Parallelism, Ithaca, NY, 8-10 August 1993.

Array Distribution in Data-Parallel
Programs

Siddhartha Chatterjee
John R. Gilbert

Robert Schreiber
Thomas J. Sheftler

The t_esearch Institute for Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was supported by NASA via Contract NAS 2-13721 between NASA and the Universities
Space Research Association (USRA). Work was performed at the l_esearch Institute for Advanced Computer
Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000.

Array Distribution in Data-Parallel Programs

Siddhartha Chatterjee" John R. Gilbert t Robert Schreiber" Thomas J. Sheffler"

Abstract

We consider distribution at compile time of the array data in a distributed-memory implementation of a data-

parallel program written m a language like Fortran 90. We allow dynamic redistribution of data and define a heuristic

algorithmic framework that chooses distn'oution parameters to _e an estimate of program completion time. We

represent the program as an alignment-diswibution graph. We propose a divicle-and-conquer algorithm for distribution

thatinitiallyassignsa common distributiontoeachnode ofthe graphand successivelyrefinesthisassignment,taking

computation,realignment,and redistffoutioncostsintoaccount.We explainhow to estimam theeffectof distribution

on computationcostand how tochoose a candidatesetofdistributions.We presenttheresultsof an implementation

of our algorithms on several test problems.

1 Introduction

One of the major decisions in compiling data-parallel programs for distributed-memory parallel computers is the
mappingofdataandcomputationtothemultipleprocessorsofthemaclxine.A goodmappingminimizesprogram

completion time by balancing the opposmg needs of parallelism and communication: spreading the data and work
overmany processorsincreasesavailableparallelism,butalsoincreasescommunicationtime.

Mostcompilationsystems(e.g.,FortranD [I0]andl-ligttPerformanceFortran[9])dividethedatamappingproblem
intotwo phases:alignment,"inwttichtherelativepositionsofarraysaredeterminedwithinaCartesiangridcalleda

template,and distribution,inwhichthetemplateispartitionedandmapped toaprocessor=_'id.We havedealtwith

thealignmentproblempreviously[2,4,5].Thispaperfocuseson thedistributionproblem.

1.1 Distribution

The distribution of a template specifics for each of its dimensions the number of processors p it is spread across and
the block size k used in the distribution. Template cell i is located at processor (idiv k) mod p. The dismbution of a
multidimensional template is the tensor product of the distributions of each of its dimensions. The HPF declarations

CrrPF$ TEMPLATE T(100,200)

CHPF$ PROCESSORS P(4,8)

CHPF$ DISTRIBUTE T(CYCLIC(1),CYCLIC(IO)) O_TO P

specify the distributionof a template to a 4.× 8 processor grid with block sizes 1 and i0 in the two dimensions. The

mappingofadataarrayisdeterminedby thecompositionofitsalignmenttothetemplateandthedistributionofthe

templatetotheprocessorgrid.Notethatdistributingatemplatedimensiontooneprocessorisequivalenttomaking
thatdimensionresidentinmemory.

The distributionproblemistodeterminetemplatedistributionparametersthatminimizethecompletiontimeof

theprogram.Therearctwovariantsoftheproblem,dependingonwhetherornotwe allowdynamicredistributionof
templatesanddataobjects.

"Re_arel,Instimm forAdvanced Computer Science.MailSto_T27A-l. NASA Amos ResearchC_nmr. MoffnttField. CA 94035-|000
(so_riacs.edu. sahreibt_riacs.adu, sheiile_riacs.adu). The work of these authors was mppormd by the NAS Systems Division via Contract NAS
2-13721 between NASA and the Univeraities Space Research Association (USRA).

t Xerox Palo Alto Reseaz_ Center. 3333 Coyote HR1Road. Palo Alto. CA 94304-1314 (gilbert@paro.xerox.com). Copyright (_ 1994 by Xerox

Corporation. All rights rcscrvea.

Problem 1 (Static) Given a program and a number of processors, determine a common distribution for all array
objects that minimizes the completion time.

Problem 2 (Dynamic) Given a program and a number of processors, determine the distribution at each definition
and each use of every array object so that the completion time is minimized.

1.2 Problem formulation

rn our system, program data flow is represented as a directed, edge-weighted graph called the Alignment-Distribution

Graph (ADG) [3]. It consists of ports, nodes, and edges. Ports represent array objects manipulated by the program.
nodes represent program operations, and edges connect definitions of array objects to their uses. See Section 6 for

examples. Alignment and distribution are attributes of ports (array objects). Each port has an alignment to a template,
and a distribution of the template to a processor grid. With one exception, which is noted in Section 5.3, we treat the
ADG in this paper as an undirected graph.

Nodes constrain the alignments and distributions of their constituent ports. Alignment constraints have been

discussed elsewhere [3]. The distribution constraint at a node is particularly simple: all of its ports must be aligned to
the same template, with the same distribution parameters. It is therefore sensible to speak of of "the distribution at anode".

The ADG makes communication explicit. Commumcation occurs when the alignment or distribution is different

at the end points of an edge. ADG edges connect the definition of an object to its uses. Realignment occurs along an
edge when the alignment of the object at the tail of the edge is different from its alignment at the head. Redistribution

occurs along an edge when the distribution of the template at the tail is different from the distribution at the head.
Alignments are chosen in a previous compilation phase, and are considered fixed here. The interaction of alignments
and distributions is quite important in determining good distributions. We cover this topic in Section 5.3.

Let _ be a mapping from ADG nodes to distributions. The computation time T,o,np of an ADG node u is a function

of its computation, the sizes of the array objects it computes, the alignments of its ports, and the distr/bution 6(u) at
the node. The cost of any realignment that occurs on out-edges of an ADG node can be accounted for at the node,
as we show in Section 5.3. Thus, we include a term T,,o,_,, called a node cost, that accounts for computation and
realignment, in our model of completion time. All our techniques assume that the dependence of node cost T,,ode on
distribution can be made explicit. Section 5.3 discusses techniques for doing this.

The redistribution time T_,ai,t of an edge (u, v) depends on the weight w_,_of the edge, and the distributions 6(u)
and 6(v) of nodes u and v. Specifically, we assume that the cost of redistribution along edge (u, v) is the product of
three terms: a machine parameter p that gives the cost per data item of all-to-all personalized communication; the edge
data weight w_,_ (the total data volume carried by the ADG edge); and the discrete distance between the distributions
5(u) and 6(v), defined to be 0 if 6(u) equals 6(v) and 1 if they differ. (Section 5.1 provides some empirical evidence

• jnstifyingth/s model.)

Our model of completion time of the ADG G = (V, E) with alignment map a and distribution map 6 is

6)= + a0,),a(v)). (i)
EV (u,)EB

In the sequel whenever we refer to a "cost" we mean either the node cost T,_°d, of an ADG node, or the redistribution

tJalle Tr,ai,t Of an edge. To simplify notation, we shall suppress the a in T/i,,, _ and T,_od, in the sequel, since we
assume that a has already been determined, and is not subject to further change.

Given the ADG G and the alignment mapping a, the goal is to determine the distribution mapping 6 that minimizes
the completion time Tlini,h(G) or, _). We shall call a distribution mapping opamal if it mmimjz_ Tlini,h , given Gand a.

We collect here some definitions and facts from graph theory and linear algebra that we will use in the paper. Let
S C_V be a subset of the nodes of the ADG. We denote by G(S) the ADG subgraph induced by S. We assume that the

set of candidate distributions D has been determined. (We show in Section 5.2 how to do this.) A distribution mapping
of S is a function 6 : S _ D. It is staac if 6(s) is the same for all elements s of S, otherwise it is dynamic. If 5 is
defined on S, we call the set S static or dynamic depending on whether the restriction of 5 to S is static or dynamic.

LetS C V be given. Define T, oa_(S, d) = _v_s T, oa_(v, d). We denote by Top,(S) me minimum over all
d E D of T,_oa,(S, d), and call this the staac cost of G(S). It is the minimum completion time of G(S), given that all
nodes in S are constrained to have the same distribution, since there is no redistribution when S is static. Define a best

static distribution of the subgraph G(S) as some distribution d that achieves the static cost of G(S).
A partition of S is a set of disjoint subsets of S whose union equals S. We shall primarily deal with partitions

of the nodes of an ADG subgraph G(S) consisting of two subsets, St and S=. For sucia a two-way partition, define

cut(St, 5'2) - { (u, v) E E I u E St, v E $2 }, and a redistribution cost cut-cost(St, $2) - p _(u,,)¢oa_(s,,s,) w,v.
Let X be any undirected, edge-weighted, n vertex graph with vertices V and edges E. The Laplacian matrix of X

is the symmetric n x n matrix defined by

O,

i T_j and (i,j) E _
i-j
otherwise.

If we define the weighted adjacency matrix A (X) in the usual manner and the weighted degree matrixD(X) = diag(d_),
where dl is the sum of the weights of edges incident on vertex i, then L(X) = D(X) - A(X). A Laplacian matrix
has nonnegative eigenvalues, one of which is always zero. If the graph X is connected, then the eigenvalue zero is
simple, and the corresponding eigenveetor is the vector e = (1,..., 1)T.

Let z be a real n-vector. We shall make use of p-norms of vectors, defined by

and the co-norm, defined by

IMI,,= l d") ''p,
i

I1 t1 = maxI d.

Note that the 2-norm is the usual euclidean norm in real n-space. Rn.

1.3 Previous work

Most of the previous work inthis area has concenrxatexi on the static version or on simplified dynamic versions of the
problem. Wholey [16] uses a hill-climbing procedure to determine the distributions for named variables. (A named
variable corresponds, in our formulation, to a subset of the nodes of the ADG. Thus. Wholey considers a restricted

version of the dynamic problem.) Gupta [8] uses heuristic methods to determine the distribution parameters. He
analyzes communication patterns to determine whether block or cyclic distributions are preferable. Fie then uses an
affinity graph framework to determine block sizes. Finally, he allows at most two array dimensions to be distributed
across the processors, and determines the proper aspect ratio by exhaustive enumeration.

Kremer [12] shows that dynamic distribution is NP-complete. Bixby et al. [i] and Kremer et aL [13] present a
partial, heuristic solution method. They assume that the user provides a decomposition of the program into phases,
which are program fragments that are executed without changing distribution. Dynamic redistribution therefore only
occurs between phases. Their system _ooses the distribution of each phase. They solve this restricted problem by
reducing it to 0-1 integer programming.

The techniques we present here, in contrast, do not require the user to provide any decomposition of the program.
We propose, instead, a fast algorithm that first determines node subsets to be given the same distribution and then
determines their distributions.

1.4 Organization of the paper

The remainder of the paper is organized as foUows. Sections 2 through 4 discuss Our algorithm for determining distri-
butions. Section 5 explains details of cost modeling. Section 6 shows experimental results from our implementation
ofthealgorithm.Finally,Section7presentsconclusionsandfumm work.

2 The distribution algorithm

The dynamic distribution problem is to choose a distribution mapping that minimizes completion time Tli,,i,h with

given ADG and alignment mapping. Our formulation of the distribution problem resembles graph partitioning;
but unlike classical graph partitioning problems, there is no intrinsic balance criterion in our problem formulation.

Moreover, the tension between T,_oae and T,.eai,) makes this problem interesting. Kremer [12] proved that dynamic

distribution N'P-complete. We therefore seek good heuristics rather than exact algorithms for me problem. This section
gives an overview of our algorithm; the next three sections discuss details.

Assume that we have chosen a set D = {at , ad} of candidate distributions. (Section 5.2 discusses how we do
this.)

Algorithm l approximately solves the dynamic distribution problem using the divide-and-conquer paradigm. If
it determines that the whole ADG should have a static distribution, then it chooses a best static distribution of G.

Otherwise it partitions the ADG into two subgraphs and recursively determines dynamic distributions for each of them.

The conquer step which follows chooses the better of two alternatives: either the union of these two dynamic subset
distributions, or the best possible static distribution for the whole ADG. Thus, rather than requiring user intervention,

Algorithm 1 automatically finds sets of nodes that it constrains to share a.common distribution. It then determines

distributions for these sets. The key to the algorithm is the partitioner, which must choose a partition that groups
strongly related nodes in the same subset.

Algorithm 1 (Top-down partitioning of ADG for distribution analysis.)
Input: S, a set of ADG nodes; D, a set of candidate distributions.

Output: 6, a distribution mapping from S to D; ct, the completion time of set S.

1 sc *- static-cost(G(S))

2 sd ,--. best-static-distribution(G(S))
3 if terminaaon condition is reached then
4 ct +--s¢

5 6(V) *- sd for each v in S
6 else

r [St, S2] *- partition(S)

8 [at, ct_] 0-- Algorit&n l(&, 29)

9 [52, et2] *- algoritlm_ I(S2, D)

lo drnonZc-cut*- {(u, z I st, &, at(,,) #
11 dynamic-cut-cost _.- p _'_(u,v)¢dynamic-cut wu_
12 xo _'-- ett+ et2 +dynamic-cut.cost
t3 if _D < SC then

14 Ct 0-- t¢o

18 a *-at ua2
16 else

17 ct *-so

18 a(v) +---sd for each v in S
19 endif

20 endif

21 retu Is,ct]

The divide phase calls a partitioning routine on line 7 that returns a partition of the node set S into St and 32.

The conquer phase calls Algorithm i recursively on the subsets St and $2 and determines _;o, the completion time
achieved using the given partition, with dynamic distribution of each subset (line 12). If this is less than the static cost

of G(S), we define the distribution mapping as the (disjoint) union of the mapping returned by the recursive calls.

Otherwise, each node of S is mapped to a best static distribution of G(S).

Section 3 discusses partitioning strategies, and Section 4 discusses the termination condition.

One might also employ "bottom-up" clustering procedures for finding static subgraphs of G. Such a procedure

would begin with single node subgraphs and merge them. We do not, however, have any experience with such
procedures.

We show in Section 3 that the costs of our implementations of the function partition for an n-vertex subset S

are O(n3). Hence, Algorithm i has a worst-case complexity of O(n% If the partitions we choose turn out to be

well-balanced, however, then its complexity can be as small as O(n3).

3 Partitioning

A core routine of Algorithm 1 is the partitioner, which takes a subset of ADG nodes S and partitions it into two subsets

St and $2. Algorithm 1 then independently computes candidate distribution mappings for the induced subgraphs. Our

key partitioning heurisitic is the following: choose a partition that minimizes xs(&, S:), which we define to be the
sum of the static costs of & and S: and cut-cost(St, S_.). (The subscript S stands for "static".)

In this section we present two algorithms of polynomial complexity for, approximately solving this problem. Both

encode the problem as the minimization of a real-valued function of the vertices of the unit n-dimensional cube, and
both embed this mmmaization in an easier continuous problem.

The approximately optimal partitions that these two algorithms provide could be improved further by a subsequent
improvement procedure of Kernighan-Lin type, in which nodes are moved from one subset to the other singly, in order

to further reduce xs. We do not yet know its complexity, or whether such postprocessing is worthwhile.

3.1 The partitioning problem as nonlinear multidimensional optimization

In recasting the partitioning problem in matrix terms, we use techniques seen in spectral graph partitioning methods [1#].

Let S be an n-vertex subset of ADG nodes. Assume we are given a partition of S into two disjoint subsets St and

$2. Let z be an n-vectorwith elements+l and -t encodingthispartition;nodes correspondingtothe+i elements

ofz belongtoSt,whilethosecorrespondingtothe- lelementsbelongtoS_..Let e be then-vectorofalll's.

As above,D = (61.....6_} isa givensetofcandidatedistributions.Constructthed x n node-costmatrixC,

such thatCij = T,oa,(j,&) isthenode costofnode j withdistribution6/.

We now formulatethevariouscostsintermsofmatrixexpressions.The sum oftheweightsoftheedgescrossing

the cut is given by ¼_(,,,.)_E w,,. (z. - z.)2, since the term (z,, - z_)2 contributes zero if z,, and z_ have the same

sign and 4 if they have different signs. To write this as a matrix expression, we simplify as follows:

w,,,,(z,, - z,,) a =
(u,v)EE (u,v)_E (u,v)E8

(u,v)_E u v

u t_

= zTDz-- zTAz

= zTLz.

The redistribution cost of edges crossing the cut is therefore ¼pz :r Lz. To get the static costs of & and $2, we need to

extract the nodes belonging to each set. Given that the elements of z are + 1 and - I. we see that the corresponding

elements of the vector ½(e + z) are 1 and 0. while those of the vector t (e-z) are 0 and 1. Element i of the matrix-vector

product ½C(e + z) gives the cost of the +1 partition ff each node in that partition has distribution 6_. The static cost

of St is therefore½mmi(C(e + whilethat of& is ½mmdc(e - z)). Wethereforeseekto minimize

(2)

over the set of vectors with elements ±1, not all elements the same. This is the set of vertices of the n-dimensional

unit hypercube, without the two elements e and -e whose elements are all of the same sign. We denote this set by H,,.

Rewrite the matrix C = B - M, where B is a matrix whose entries are a constant b, target than max,1 C_y; M is
the "savings" matrix.

Note that all elements of the products M(e + z) and M(e - z) are nonnegative, as the elements of M are positive
and the elements of (e + z) and (e - z) are nonnegative. Hence.

= ram.((B- M)y),

= - (My),)
i

= b z,,- max(My),
i

= b_ _{ - IIMulI..
i

The following constrained minimization problem is therefore equivalent to equation (2):

i T
rain _,oz Lz - _tlM(e +)lloo- _tlM(e - z)lloo (3)_EH_

Note the two kinds of terms in the cost function. The redistribution term tzTLz iS sensitive only to the edges of
the ADG. The other two node-cost terms consider only the node characteristics. To see how these various terms affect

the minimization, consider the ladder graph shown in Figure i. Assume that there are three candidate distributions,
that p = i, and that the node cost matrix C has the following form:

i00 100 20 i00 i 1]
C= 100 [00 20 I00 100 100 .

1 l 1 1 100 100

Each column of C gives the cost of a single node in each of the three candidate distributions.

Minimizing just the communication term gives the partition vector z = [I,-1, 1,-l, i,-i] T, with completion

time := 3 + 102 + 102 =. 207. Minimizing only the node terms gives the partition vector a: = [1, 1, 1, 1,-1, -t] T,
with completion time =. 200 + 4 + 2 - 206. Minimizing all three terms together gives the partition vector z =

[1, i, - 1, i, - l, - i] T, with completion time - 121 + 3 + 22 = 146. This demonstrates the insufficiency of minimizing
the node or communication terms individually.

The minimization problem (3) is combinatorial, and may be as hard as the original distribution problem! Our

heuristic approach is to first change the search space to a convex, closed, bounded region of R n, and then to replace

the objective function by a differentiable approximation. We present two algorithms of this type for approximately
solving (3).

3.2 Algorithm NL

The first algorithm (called NL for nonlinear) uses tech_rtiques from constrained nonlinear optimization to solve (3).

We first change the problem to a continuous version, replacing the oo-norm by a 2p-norm for sufficiently large integer
p, and minimizirlg over the surface of the n-dimensional unit 2p-norm ball rather than over the vertices of the n-

dimensional unit hypereube} We return to the discrete domain by taking the sign of the elements of the solution of

the continuous problem. We need to exclude the positive and negative orthants, since if all elements of z have the

same sign, no partition is produced. A simple constraint, which we use, is to require that z be orthogonal to e. Let

tThe definition of the p-norm of a vector involves the absolute values of itg components. An even-integer p-norm makes the absolute values
unnecessary and is smooth at z = 0.

6

Partition minimizing

computation terms

Cost - 4 + 2 ÷ 200 = 206.

\

2O
%N

100

I

I

I

x

I \
x

x

1

I

I

I

100
%

X

x

Partition minimizing

compietion term

Cost = 22 + 3 + 121 = 146.

Partition minimizing

communication term

Cost = 102 + 102 + 3 = 207.

Figure 1: Ladder graph illustrating the roles of computation and communication in partitioning.

Up = (z E R_ l eTz = 0, Ilzllp = i}. The problem thus becomes

_EU_p

Nonlinear optimization problem (4) can be solved by standard ita_.ive methods like successive qu_lr"_ic pro-
gr_mling [6]. While the complexity of each ite_ative step is independent of p, convergence depends on p. In practice,
choosing p = 2 appears to be adequate.

The cost of partitioner NL depends on p, on the particular minimization procedure, and on n; the dependence on n
is O(n 3) for standard optimization procedures.

3.3 Algorithm CC

In this section we describe an approximate solution technique that may be significantly tess costly than Algorithm NL.

The idea m this algorithm (called CC for convex combinations) is to solve approximately the communication-only
problem and the node-only problem in the continuous domain and to then search for the minim_er of equation (3)
among the convex combinations of the two extremal vectors.

The vector that minimizes the communication term zTLz among vectors of umt 2-norm is e (since emLe = 0);
among vectors of unit 2-norm orthogonal to e, its minimizer is the eigenvector of L corresponding to the smallest
nonzero eigenvalue (called the Fiedier vector). We rescale the Fiedler vector to have unit infinity norm, and call it zc.
(Note that finding a single eigenvector is somewhat cheaper than finding all of them.)

As for the node term. we require a vector z such that M(z + e) and M(z - e) are simultaneously large.2 Note
that M is elementwise positive, so that e maxLqxizes the infinity norm of Mz among vectors z with unit infinity norm.
We therefore expect that e will be far from orthogonal to the right singular vector z_ of M corresponding to the largest
singular value. (This is the vector z of unit 2-norm that maximizes the 2-norm of Mz.) By the Perron-Frobenius
theorem [15], zt must have positive elements. The second right singular vector of M maximizes the norm of Mz

among unit vectors z orthogonal to z_. Therefore. if we choose z of infinity norm one in the direction of z2, then both

z + e and z - e will inherit the large component that e has in the direction zl, making both M(z + e) and M(z - e)
large. Call this vector ZM.

We now search along the line between zc and z_ tbr the minimizer, i.e., we seek A in [0, i] such that the vector
z = AzL + (i -- A)zM minimizes the objective function in (3). Since both z_ and ZM are only determined up to sign,
we replace zM by --ZM if necessary to make the two vectors agree in sign in at least one element before beginning
this line search. (Consider, otherwise, the effect of zM = --zC.) We explore the searcta space using golden-section
search [7]. FInally, we revert to the discrete domain by taking the sign of the continuous solution.

Oar implementation of CC runs in time O(n_).

4 Termination

The second tmspecified element of Algorithm 1 is the termination criterion that determines when to stop dividing.
We could recurse all the way down to single nodes, but this is often unnecessary. In this section, we develop certain
lemmas regarding structural properties of ADG subgraphs that tell us when we can safely stop the recursion.

First, some defimtions. A subgraph G(S) of the ADG G is opamally static if some optimal distribution mapping
for G assigns the same distribution to all nodes in S. G(S) is necessarily static if every optimal distribution mapping
for G assigns the same distribution to all nodes in S.

For v E V, let 6op,(v) be some distribution d that minimizes T, oe,(v, d). Vle call 6op,(v) local minimum cost
distribution at v. For any S C V, let 6_,t (S) be a best static distribution of G(S), i.e.. some value of d that minimizes
SvEs Tnod,(v, d).

S is unammous ff there is a best static distribution 6ore(S) that is also a local minimum cost distribution for each

node v E S; that is, there is some distribution d such that, for all nodes v E S, d = 6_,t(v) = 6_,t(S).

Zwe mc_tms hsngth in tho infinitynorm:butbecauseofthnboundIlztl_. < 11=tl2< ,_z/2llzll_.thathokisfor_ z _ R", _,ecanswitch tothn2-normIlztlzwithout danger. - -

Define A(S) as mine _o_s T.oae(v, d) - _s mind T_oa,(v, d). zX(S) gives the difference in node-cost be-
tween placing the entire node set at its best static distribution and placing each node at its local minimum cost

distribution. Clearly, A(S) = 0 if and only if S is unanimous; it is a measure of "dissension" in S. Define O(S) as
mm._s(mm_6o,,(_) T.oa,(v, d) - T.oa.(v, 6op((v))). O(S) gives the least possible cost of changing the dismbution

of a node in S from its local minimum to the distribution of next lowest cost. Let w(S) be the total weight of edges
with exactly one endpoint in S, multiplied by the communication parameter p. Finally, define mmcut(S) to be the
smallest possible redistribution cost incurred when S is dynamic, i.e.. mmcut(S) = mmcut-cost(St, S_) where the
minimum is taken over all partitions of S into two nonempty subsets.

Now we prove some lemmas regarding the static properties of subgraphs. Our goal is to prove that a subgraoh is
optimally or necessarily static, because then we know that it is sate to terminate the recursion.

If A(S) is large, then it is hard to satisfy all nodes with a single, static distribution. Also, ff w(S) is also large,
then the nodes that border S may "pull" its elements toward different distributions; On the other hand. when G(S)
has no low-weight edge cutset, it will be expensive to allow it to be dynamic. These competing factors are directly
comparable, as we now demonstrate.

Lemma 1 (Min-cut) If turnout(S) > w(S) + _(S) for a set S, then S is opamally staac.

Proof: Suppose mincut(S) > w(S) + zX(S), and consider a distribution mapping that assigns different distributions

to two nodes z and y in S. If we modify the given mapping to assign every node in S the distribution 6opt(S), we
pay at most 2x(S) (for the penalty in node costs) plus w(S) (for the possible increase on edges joining S to the rest
of the graph). Since the original mapping assigned different distributions to z and _/, there is some set of edges with
differently-distributed endpoints that separates z and y in S. This cut has cut-cost at least mincut(S); making S static
eliminates that cost. Thus we gain at least as much as we pay. rn

The next lemma establishes sufficient conditions for a subgraph G(S) to be optimally static in the special case
where it is unanimous. This strengthens Lemma I for this case.

Lemma 2 (Unanimous) If set S is unanimous and mmcut(S) + O(S) > w(S), then S is optimally static.

Proof: Consider a distribution mapping of G in which S is dynamic. It suffices to show that under the conditions of

the lemma, we can produce a distribution mapping of G that has lower completion time and in which S is static.

Given the proposed dynamic mapping of S, change it to a mapping in which S is colored 6op_(S). in doing so, we
can increase the completion time by at most w(S). (Since S is unanimous, we could not have increased any node cost
by mapping all nodes to distribution 6op:(S).) On the other hand. we have reduced the completion time in two ways:
fast, by avoiding the redistribuion costs or"the dynamic mapping; and second, by remapping some nodes to their local
mimmum cost distributions. The reduction from the fast source is at least mincut(S), and that from the second source
is at least O(S). Thus, we have decreased the completion time by at least much as we could possibly have increased
it, producing a static mapping of S of lower completion time than the initial dynamic mapping.

The final lemma shows how an optimally static subgraph may be enlarged while remaining optimally static.

Lemma3 (Accretion) Let S be optimally staac and assume v _ S. Define w(v, S) to be p multipliedby the stan ofthe
weights of edges connecting v to S, and similarly define w(v, S) as p times the sum of the weig hts of all other v-incident
edges. Finally, define range(v) as (maxd T,_oa,(v, d) - mind Tnoae(v, d)). Ifw(v, S) > to(v, S) + range(v), then
S U {v } is optonally static.

Proof: Consider a distribution mapping in which S is static with distribution d and v has a different distribution

d_. Changing the distribution of node v to d reduces the completion time of the mapping by w(v, S) and raises it by
to(v, _) + range(v). Given the conditions on v, this results in a net reduction in completion time. Hence S U {v} is
optimally static. O

Note that the computation involved in verifying the inequalities is dominated by the time taken to find the global
m/mmum cut mineut(S). A naive algorithm for this would run n single-source single-sink minimum cut computations
(n being the number of nodes in S) for a total cost of O(n 3) or more. Recently, Karger and Stein [11] have recently
developed a probabilistic algorithm for this problem with O(n:) nmnmg time.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Rou_r Commumc_on Tmaes

) j

I I I I 1

200(_00 4O00OO 600(30O 80(X)O0 1o+06
Array Siz_

t_

Figure 2: Performance of all-to-all personalized communication on the CM-5.

5 Modeling

This section fills in certain details concerning the modeling of the distribution problem. The specific issues covered

here are use of the discrete metric for redistribution cost, choosing candidate distributions, and building the node-cost
matrix C.

5.1 Redistribution cost

Changing distributions typically involves all-to-all personalized communication involving the router in a parallel
mactxine. Eacix processor goes through two steps to complete the process: first, it must examine the data it currently
holds, compute the identity of the processor that will hold it in the new distribution, and add it to the message buffer
for that processor;, then it must send out all the messages to the network. Rather than build a very detailed model of the

network incorporating routing algorithms, congestion, and the like, we model such communication using the simple
discrete metric. The communication cost is also proportional to the size of the object whose distribution is being
changed. Experimental evidence on the CM-5 shown in Figure 2 reveals that tim is an adequate model in practice.
The program timed was written in CM Fortran. It performs a permutation of the columns of a (BLOCK. BLOCK)
mapped square array on a 4 x 8 processor _r-id.

5.2 Choosing candidate distributions

The optimization framework described for the distribution problem requires a set of candidate distributions. We now

present a heuristic method for generating a reasonable set of distributions based on the characteristics of the array
objects present in a program.

A distribution is a partitioning of a t-dimensional template onto the available processors. A distribution may be
identified with an ordered pair of t-vectors:

((v,,...,p,),(k, ,k,)).

10

X

X

X

X

X

X

X

N

I

m

m

(a) (b)

Figure 3: The interaction of features sizes and block sizes. The program has two arrays, one of size 1000 x i000,
and me other of 250 x 250 (shown shaded in the lower left comer). The template is distributed across a 2 x 2 grid
of processors. (a) Block sizes are chosen to match the feature size of the larger array. The smaller array ends up on
a single processor. (b) Block sizes are chosen to match the feature size of the smaller array. Both array are equally
distributed across the processor _d. The portions of the arrays held by a specific processor are marked with X.

The first element describes allocation of the processors tO the dimensions of the template, and the second gives the
block size in each dimension. Thus, template cell (it,..., i,) is located at processor coordinate ((it div kt) rood
Pl (it div k,) mod p,).

Generating block sizes requires care. A naive algorithm might simply find the size of the template occupied by the
array objects and generate a few block sizes based on that size. However, it is important to recognize and consider the
different feature sizes of different objects. Consider an example program with one large array of size I000 x I000,
and a small array of size 250 x 250, both aligned to the lower left comer of the template. This arrangement is shown
in Figure 3.

Let there be four processors that are to be allocated with two per dimension, that is, (pt,/h) = (2, 2). The size
of the occupied template is the entire large array. A simple blocked distribution over these four processors has block
sizes (500, 500). This distribution would balance the distribution of the large array, but would leave the small array

on only one processor. Now consider a distribution suited to the small array: block sizes (125, 125). This distribution
balances the elements of both the small array and the large array. The cost matrix entries computed for operations on
the smaller array would reflect this difference in load balance between the two cases. We must generate distributions
that are suited to objects with many different feature sizes and allow the divide-and-conquer partitioning algorithm to
choose the right distribution from this set for each node in the program.

We fast calculate the extents of all objects in the program. The extent of an array object is the size of the smallest
t-dimensionai box that encloses it over its iteration space. (Note that the size and position of an object may be functions
of loop induction variables.) The extent e of an object is a t-vector.

The collection E of the extents of all objects in the program typically forms a small number of clusters in R'.
We use histogrammmg to identify these clusters and to select a representative vector for each cluster. Call this set of
representative extents R.

The set .8 is used to generate a set A of processor allocations. Each element of/_ gives a ratio with which processors
are divided among the dimensions of the template. We add to this set an allocation that equally divides the processors

11

if it is not already present. We also add allocations that give only one processor m dimensions for which some extent
has a small value.

Block sizes must be chosen based on the extents of objects and also on the manner in which they are used. If an array

object varies in size over the course of a program (for example, the active part of the matrix in an LU-decomposition)

then a block size of 1 should be examined to achieve load balance over the whole iteration space. Similarly, an array
object used in a stencil computation should have a large block size to minimize shift communication.

We extract sets Ft through F_ of feature sizes from __ by projecting individual components. Thus,

F_= {_ I__ R }.

Additionally, we acid a feature size of 1 to Fi if the size of any object varies in dimension i during program execution.
The set D of candidate distributions is constructed from the sets of processor allocations and feature sizes as

follows:

{ ">"1.....D= ((p: ,P,),(H_/p,],... U,/p,])) Y: _ F1

A _ F_

The resulting set of distributions could potentially be very large. This could render the divide-and-conquer
algorithm unusable, because the running times of both our partitioners are sensitive to the number of distributions.

In practice, programs typically have only a few feature sizes, and we generate only a few processor allocations. Our
feeling is that most programs can be analyzed using a few tens of candidate distributions.

5.3 Building the node-cost matrix C

The model, equation (1), for the completion time of an ADG separates the time into a component depending on the
nodes and another component depending on the edges of the ADG.

Nodes pertbrm computation and intrinsic communication. Intrinsic communication is communication that is

performed as a part of the node computation. An example is the communication of values that happens during the

summation of a distributed array. The value of T#omp (v) a, d) for an ADG node v with distribution d, and with a given

alignment a(v), is determined by finding the largest number of elements held by one processor of the array computed

at v under the mapping (of array elements to processors) d o oc(v), and weighting it by the time per element of the

computation done by node v. The only thing that complicates this is that the computation may be performed within

a loop nest, and the sizes of the objects being computed can be functions of loop induction variables. So, in general.
T,o,np (v, or, d) is a sum over iterations of the compute time of node v at each iteration.

For a given iteration, the maximum processor load is a product over array axes of an array extent divided by an

effective number of processors. The effective number of processors to which an array axis maps may be less that the

corresponding element p_ in the distribution vector, since, with non-unit stride alignments and stnded array sections,

subsets of processors may actually hold array data. As an example, consider the following program fragment.

R_L A(4,s), s(4)

I_ITEGER I, ST

PROCESSORS P(2,4)

DISTRIBUTE A(BLOCK, BLOCK) ONTO P

ST = i

DO I = I, 3

S = S + sLrM(A(:,

ST = ST * 2

E_DD0

I:8:ST), DIN = 2)

12

Themaximumprocessorloadisfouratiterationone,andtwoatiterationstwoandthree.
Edges.ontheotherhand,pertbrmrealignmentandredistribution.Anindividualedgemaycarryzeroor more

oftheseformsofcommumcation.Sincealignmentsaredeterminedinapreviouscompilationphase,we would like

to treat the realignment communication as a known quantity. However. the realignment communication is still a

function of distribution. For example, if there is shift communication along an array axis that is memory-resident.

the realignment cost is in fact zero. Should an edge carry both realignment and redistribution communication, the
realignment communication can be folded into the general redistribution communication at no additional cost.

With this m mind, we use the following approximation in building the matrix C. Here only, we must be aware of

the direction of the edges of the ADG, which correspond to the direction of data flow. We find the realignment cost

for edge (u, v) assuming distribution d at both head and tail, and add it into the cost T, od, (u, d) of node u. Thus, in
equation (1),

uEV" (u,v)EE

The cost matrix C is calculated using this definition of T,,od,. It includes the realignment cost of any ADG edge that

carries realignment in the node-cost for the node that is the source of the data communicated. The model is approximate;
:t overestimates communication time when an edge carries both realignment and redistribution communication.

Realignment communic_on comes in three forms. A change of the array axis to template axis map, or of an

alignment stride requires general all-to-all personalized communication; going from a nonreplicated to a replicated

alignment (which is how the spread operator of Fortran 90 manifests itself in our system after the alignment phase)

requires broadcast communication (possibly using a spanning tree algorithm); a change in array offset requires grid

communication. We calibrate the commumcation characteristics of the machine using three parameters p, _r, and v,

which give the time per word transferred per processor in the three modes of communication. We use these parameters
to scale the maximum processor toad in computing realignment time.

6 Experiments

In this section, we compare the performance of partitioning algorithms NL and CC. The test graphs are small, but their
characteristics are representative of genuine applications. We implemented both partitioners in MATLAB, and used

the number of floating point operations (flops) as measured by MATLAB as a measure of the computation involved in
solving a test case.

The first example ADG is the ladder graph shown in Fignre 1. In this case, both NL and C C found the minimum-cost

solution shown in Figure 1. However, our implementation of partitioner NL required 59836 flops to End this solution
while our implementation of partitioner CC required 8326 flops.

The next example ADG is shown in Figure 4. It represents the structure seen in multizone applications such as the

simulation of both the fluid dynamics and the structural mechanics on an airplane wing. In such a simulation, we have

two or more data structures that undergo local computation and communication, with occasional transfers of smaller
sets of data between them. A schematic of such a code is as follows.

REAL A(2000,2000), B(SO00,SO00)

DO I = i,_

A = _(A)

B(lOOl:2000, i) = A(:, 2000)

B = g(B)

A(:, 2000) = B(1001:2000, I)
E_DDO

The function f encapsulates the structures computation, and function g encapsulates the fluids computation. We

consider two candidate distributions, one being optimal tbr f and the other being optimal for g. Let the cost vector
for the f-node be 10_[1,2] T and that for the g-node be 106112, 6] T. The two fanout nodes and two section nodes have

13

4M

f

4.44 25M

25M

8M

0

optl,naLfor,_

optimal for f

500 rho

Figure 4: The ADG for the two-zone example, and the cost of its optimal partition and the distributions as a function

of p.

cost zero (no computation is performed there). The cost of the section-assign (SEC= in the figure) nodes is negligible
compared to the cost of the f- and g-nodes, so we take them to be zero as well. The node-cost matrix of the ADG is

100012000]C'=106[2 0 0 0 6 0 0 0 "

Finally, observe that the size of the left and right sections whose values are interchanged is 1,000.

Applying Lemma 1 to the entire ADG, we see that w(G) = 0, A(G) = 10 6, and turnout(G) = 2000p. If
20000 > 106, then the graph is optimally static, with cost 8 x 106. Otherwise, the ADG should be split down the
middle, for a cost of 20009 + 106 + 6 × 106.

Algorithm i with partitioner CC finds this behavior, as shown in Figure 4. Algorithm CC always splits the ADG
into two parts down the middle, but the Algorithm 1 checks this against the best static distribution and chooses the

best static distribution when p > 500. Algorithm NL did not always function reliably; the solution depends on its
initial starting point, and it often seemed to get stuck in local minima. Algorithm CC required about 7,700 flops, while
algorithmNL required between 2.3 x 10a and 2.7 x 106 flops.

The final example is the ADG shown in Figure 5. This example shows the essential features of an alternating-
direction implicit (ADD iteration. We consider three distributions representing row orientation, block orientation, and
colum orientation. The node-cost matrix ofthe ADG is

0 160 160 16 0 640 640 16]C'= 0 320 320 16 0 320 320 16 J .0 640 640 16 0 160 160 16

An application of Lemma 1 shows that the ADG should be static at the block orientation if p > 40 (for a cost of 1,312),
andshouldbe dynamicwiththefirstportionofthecomputationbeingperformedintherow orientationandthesecond
portioninthecolumnorientation(foracostof672 + 169).

Again, Algorithm I finds the beg of the distributions considered, for all p between i0 and 70. Partitioner CC was

14

8

24

1312

!
24

I

I

I
0 40

COLUMN

ROW

BLOCK

Figure 5: The ADG for the ADI example, the cost of its optimal partition and the distributions as a function of p.

15

reliable and required about 1. I x 10 4 flops, while partitioner NL occasionally failed to find a minimum, and required
between 9.8 x 104 and 1.4 x 106 flops.

These examples show that our implementation of partitioner NL is still far from stable. We are investigating the
reasons for its aberrant behavior. In any case, partitioner CC requires considerably less computation. The tradeoff

between solution time and solution quality is unclear from these small examples; the heuristic used in partitioner

CC is quite simple-minded, and it seems possible that partitioner NL may outperform it in solution quality for larger
problems.

7 Conclusions

We have formulated the problem of determining data distributions as a partitioning problem on a graph representation

of a program, and have presented a divide-and-conquer algorithm to solve the problem. We have developed two
different partitioning algorithms for use in this method, and have implemented prototypes of both algorithms. Our
tests on some small example programs reveals that these heuristics are reasonable.

We view this work as prelhninary. We are currently looking into the effect of weakening the termination criterion
on Algorithm 1 in order to limit the number of static subsets explored. This may produce a worthwhile acceleration of

Algorithm 1 without worsening the resulting distribution mapping. We are trying to speed up Algorithm CC and are

auditioning other hopefuls for the role of the vector zM in it. We are also experimenting with a procedure that will

find optimally static subsets a priori, and collapse them b_'ore Algorithm i is invoked. FInally, we are looking for
more difficult and representative problems.

Acknowledgments

Dan Feng suggested the ideas used in Algorithm NL.

References

[1] Robert Bixby, Ken Kennedy, and Ulrich Kremer. Automatic data layout using 0-1 integer programming.

Technical Report CRPC-TR93349-S, Center for Research on Parallel Computation, Rice University, Houston,
TX, November 1993.

[2] Siddlaartha Chatterjee, John R. Gilbert, and Robert Sctmeiber. Mobile and replicated alignment of arrays in
data-parallel programs. In Proceedings of Supercomputing'93, pages 420--429, Portland, OR, November 1993.

Also available as RLACS Technical Report 93.08 and Xerox PARC Technical Report CSL-93-7.

[3] SiddharthaChatterjee,John R. Gilbert,Robert Schrciber, and Thomas J. Shefrier. Modeling data-parallel programs

with the alignment-distribution graph. Journal o/Programming Languages, ??(??):??, ?? 1994. Special issue on
compiling and rim-time issues for distributed address space mactames. To appear.

E4] Siddhartha C"natterjee, John R. Gilbert, Robert Schrelber, and Shang-Hua Teng. Optimal evaluation of array

expressions on massively parallel machines. In Proceedings of the Second Workshop on Languages, Compilers,
and Runtime Enviroranents for Distrtbuted Memory Multiprocessors, Boulder, CO, October 1992. Published in

SIGPLAN Notices, 28(1), January 1993, pages 68-71. An expanded version is available as RIACS Technical
Report TR 92.17 and Xerox PARC Technical Report CSL-92-t 1.

[5] Siddhartha Chatterjee, John R. Gilbert, Robert Schrelber, and Shang-Hua Teng. Automatic array alignment

in data-parallel programs. In Proceedings of the Twentieth Annual ACM SIGACTISIGPLAN Symposium on
Principles of Programming Languages, pages 16--28, Charleston, SC, January 1993. Also available as RIACS
Technical Report 92.18 and Xerox PARC Technical Report CSL-92-13.

[6] Roger Fletcher. Practical Methods of Opamization. John Wiley & Sons, second edition, 1989.

16

[7] PhilipE.Gill.WalterMurray,andMargaretH.Wright. Practical Optimization. Academic Press, Orlando. FL,
1981.

[8] Manish Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers. PhD thesis. University of

Illinois at Urbana-Champaign, Urbana. IL, September t992. Available as technical reports UILU-ENG-92-2237
and CKI-IC -92-19.

[9] High Performance Fortran Forum. High Performance Fortran language specification. Scientific Programming,
2(1-2): 1-t70, 1993.

[i0] Seema Hiranandam, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD distributed-memory
machines. Communications of the ACM, 35(8):66--80, August 1992.

[11] David Karger and Clifford Stem. On O(n 2) algorithm for minimum cuts. In Proceedings of the 25th Annual

ACM Symposium on Theory of Computing, pages 757-765, 1993.

[12] Ulrich Kremer. NP-completeness of dynamic remapping. Technical Report CRPC-TR93-330-S, Center for

Research on Parallel Computation, Rice University, Houston, TX. August 1993. Appears in the Proceedings of

the Fourth Workshop on Compilers for Parallel Computers, Delft, The Netherlands, December 1993.

[13] Ulrich Kremer, John Mellor-Crummey, Ken Kennedy, and Alan Carle. Automatic data layout for distributed-

memory machines m the D programming environment. Technical Report CRPC-TR93-298-S, Center for Researcla

on Parallel Computation, Rice University, Houston, TX, February 1993. Appears in Proceedings of the First

International Workshop on Automatic Distributed Memory Parallelization, Automatic Data Distribution and

Automatic Parallel Performance Prediction (AP'93), Vieweg Verlag, Wiesbaden, Germany.

[14] Alex Pothen. Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM

Journal of Matrix Analysis and Applications, 11(3):430--452, 3uly [990.

[15] Richard S. Varga. Matrixlterative Analysis. Prentice-Hall. Inc., Englewood Cliffs, NL 1962.

[16] Skef Whole),. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD thesis, School of

Computer Science. Carnegie Mellon University, Pittsburgh. PA, May 1991. Available as Technical Report
CMU-CS-91-121.

17

h_

